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The transient-time correlation functighTCF) technique of Morriss and Evafslol. Phys.54, 629(1985;
Phys. Rev. A35, 792(1987; Mol. Phys.61, 1151(1987); Phys. Rev. A38, 4142(1988); Statistical Mechanics
of Nonequilibrium Liguidg/Academic, London, 1990 is applied to the case of an atomic fluid undergoing
steady isothermal elongational flow. It is found that nonequilibrium molecular-dynamics TTCF calculations of
the diagonal elements of the pressure tensor are extremely efficient for small applied strain rates, where the
signal-to-noise ratio for the equivalent direct time-averaged pressures is far too low. At higher strain rates,
TTCF is seen to faithfully reproduce the long-time steady-state values of the pressures, but is unable to account
for observed transient oscillations. The technique thus provides an unambiguous means of calculating the
long-time steady-state response of a fluid under steady elongational flow and opens the possibility of studying
more complex molecular fluids under relatively weak flow, allowing for greater simulation time compared to
the relaxation time of the fluid.S1063-651X97)01312-3

PACS numbds): 61.20.Ja, 05.26.y, 66.20+d, 83.50.Jf

I. INTRODUCTION the standard method, in which it may be difficult to distin-
guish between the transient response and the steady-state re-

Nonequilibrium molecular-dynamic§NEMD) simula-  sponse. It may also be possible to extend this technique to
tions of elongational flow have been attempted by only a fewthe case of molecular fluids and thus extrapolate the steady-
groups over the past decafte—6]. They are of significant State zero-frequency viscoelastic properties of interest.
interest because of the importance that rheological properties Another more obvious means of simulating steady elon-
of fluids play in a number of chemical and manufacturingdational flow of molecular fluids is to apply a low strain rate
processes in the oil and polymer industries, for example!© the system. As the maximum simulation time is inversely
Elongational flow occurs when a fluid is stretched in at leasProportional to the elongational rate [6], it is clear that
one direction and compressed in at least another. Howevermaller values ot will lead to longer simulation times. It is

the main technical difficulty in these types of simulations iswe” known that direct .NEMD is the most effigient strong-
ield method of calculating steady-state properties of interest,

the finite lifetime of a simulation due to the decrease of at{) T ) :
least one of the simulation cell dimensidds-5|. Eventually ut is inefficient .for small field$7]. It was partly for this
the simulation must cease, when the size of the cell in the oo that M_orrlss_ and EvaE&_—ll,ﬂ de_veloped the tech-

. . . ’ . o . ique of transient-time correlation functiofETCF9 as an
co_ntract|0n dimension _reache_s Its minimum exter_15|on Obsfficient method for extracting the transient response of a
twice the range of the interaction potential. The fluid musty, iy ynder the influence of a weak external field. The TTCF
achieve a steady §tate wel! before this minimum extension ifchnique has been successfully applied to planar shear
reached for a reliable estimate of the steady-state elongajmylations, with spectacular success. We will now apply the
tional viscosity to be made. For a simple atomic fluid, this ISTTCF formalism to the case of steady elongational flow and
not a serious problem, for in general the relaxation time ofj|| find similar efficiency at low strain rates.
the fluid is sufficiently smaller than the total simulation time.

However, for complex molecular fluids the relaxation time Il. THEORY

may be significantly larger than the simulation time allow-

able, rendering any NEMD simulation of steady-state prop- Using nonlinear isothermal response theory, Morriss and

erties futile. Evans[8] were able to demonstrate that for a fluid undergo-
Recently, Todd and Daivigs] devised a NEMD method ing planar shear flow, any arbitrary phase variab(¢) can

that applies an oscillating strain rate to the equations of mobe expressed in terms of@nequilibriumtransient time cor-

tion for a simple atomic fluid. This ensures that the systentelation function(TTCF)

attains a temporally periodic steady state. For a given mag- .

n!tude of the strain rate, quantities of interest, such as the <B(t))=<B(0)>—BFeJ ds(B(s)J(0)), (1)

diagonal elements of the pressure tensor and hence elonga- 0

tional viscosities, are then calculated by extrapolating their

frequency-dependent values down to zero frequency. Thewhere 3=1/KT, k is Boltzmann’s constant, an#{0) is the

main advantage of this technique is that it provides a convedissipative flux at=0, which is itself related to the adiabatic

nient and consistent means of extrapolating to the zerotime derivative of the internal enerd,9]. Here T is the

frequency(steady elongatignelongational viscosity, unlike temperature of the system that evolves from an equilibrium
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configuration att=0 to some final nonequilibrium state at t

time t and the angular brackets denote time averages. This f(l“,t)=exp{ —ﬁdeS[J(F,—S)ZFe]}f(F,O)
derivation assumes that the applied fi€lgis time indepen-

dent, although recently Petravic and Evdig] have ex- t

tended this formalism to account for explicitly time- =eXP| B F {f ds J,5(T —S)H
dependent fields. It is important to recognize that Ex).

represents the correlation of a nonequilibrium phase variable X f(T',0), (6)
B(t) at some timd, with an equilibrium {=0) value of the

dissipative flux. It represents the natural nonlinear generaliwheref(I',0) is the time-independent equilibrium isokinetic
zation of the equilibrium Green-Kubo formulas. Bét) rep-  distribution function, given af7]

resents a general arbitrary phase variable, the task at hand

involves identifying the appropriate values of the dissipative F(I',0)= exfl — BH(IN16(K(I') — Ko) @
flux and external field for elongational flow. JdI' exd — B&(I)]8(K(I') = Ko)

For an atomic fluid undergoing planar shear flow, the
adiabatic derivative of the internal enerlgy is usually writ-
ten asHy=—JF,, whereJ andF, are as previously defined.
For more complex flows, one can generalize thisHig=
—J:Fs, where now both) and F, are tensorial quantities.
For planar sheafor planar Couetteflow, it is easily seen
thatHo=— yP,,V [9], wherey is the strain rateP,, is the
xy element of the pressure tens@regative of the shear- <B(t)>:J’ dr B(I)f(I',1)
stresy, andV is the system volume.

For st_eady el_ongatlonal flow without shear, we can write ZJ' dr B(l")exp{ ,32 Fe, [f ds 34T, —

Here ¢ is the total potential energy of the systel,is the

total kinetic energy, anll is the kinetic energy at which the
system is constrained. One can now calculate the ensemble
average of the time evolution of any phase variable in the
usual manner,

the applied strain rate tensor as 5o

)

g,y 0O O x (T,0). (8)
Vu=F.=| O € 0 , 2
U=Fe 0 6” i @ Taking the time derivative of Eq8) and making use of the
o4

identity (X(t)Y)=(XY(—t)), we find
where u is the streaming velocity of the fluid. Assuming

o o Ol : d
pairwise additive potential interactions between atoms, we “ ;g :J dr B(n| — F. J «(T.—t) | (L.t
can write the total internal energy of a particle as dat (BOV) () '852,0 Cao ool 1= [HITY)

1
H, = 2m, S z i\ 3) =—B§ Fe, (B(1)J,50)). ©)
where we note that the momengaare peculiar with respect Note here thal, 5(0) refers to equilibrium values df,,; at
to u. The total internal energy is thit$y=3;H;. Assuming t=0. Finally, integrating Eq(9) with respect to time gener-
unthermostated SLLOD equations of motion for the particleates the general relation for the time evolutionBof
dynamics[7], t
" (B(1))=(B(0))= B Fe,, fodwsn,g(o»- (10
:HIJF ri-Vu, e
For the specific case of steady elongational flow with no
pi=F,—p;-Vu, (4) shear, we substitute the valueslbg&r andJ,s(0), derived
o _ o _in Eq. (5), into Eq.(10) and get
it is straightforward to show that the adiabatic time deriva-
tive of the total internal energy is given by

t
<B(t)>=<B(0)>—BV{éxxJ’0dS<B(S) Pxx(0))

: . px| - p2i
H0: _Sxx2 ml +FX|X| Snyi H)/I+Fy|y|:| . t
! +ayy | dS(B(S)P(0))
— £, %+inzi t
~ |'m, +ézzfods<B(s)Pzz(O)>} (11)

= —[exxPxxt&yyPyyt &, IV=—[VP:Vu]=—J.F,.
(5) For the purposes of this paper we are primarily concerned
with calculating the diagonal elements of the pressure tensor
Following the procedure of Morriss and Eval®, one  Pss, sSo we simply replac8 with P 55. We further note that
can show that the time-dependent Gaussian isokinetic distrEq. (11) is valid for an isothermal system that evolves under
bution function takes on the general form the application of a Gaussian thermostat to the equations of
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motion. This assumption is implicit in the derivation of the stantso and e, as well as the mass of the atoms and Boltz-

Gaussian isokinetic distribution functidsg). mann’s constant, to be unity for simplicity. Thus all mea-
sured properties are in dimensionless reduced units. The
. SIMULATIONS system is three dimensional and is periodic in all dimensions.

] All simulations are performed at the Lennard-Jones triple
The thermostated SLLOD equations of mot@iithat are  point p=0.8442 andT=0.722. The equations of motion

used in this work are were integrated using a fourth-order Runge-Kutta scheme
and the integration time step was 0.001 in reduced units for
h:&+ r-vu, all simulations. It is essential to use a self-starting integrator,

i

such as the Runge-Kutta scheme, for TTCF calculations

(12 . X
_ rather than Gear predictor-corrector or leapfrog integrators.
pi=F—pi-Vu—ap;, The latter are accurate only after an initial startup period and

. . . . are therefore unsuitable for the calculation of transient re-
wherea is a Gaussian thermostat multiplier used to ConStra"%ponseig 11]

the system to constant temperature, given as In all simulations, an equilibrium trajectory was main-

Spi-[Fi—(pi- VU)] tained at a constant state point qf, T) =(0.8442, 0.722),
= (13)  while at equal intervals of 5000 time steps, two or three
Zip; nonequilibrium trajectories were initiategdee below This

ttime separation was chosen to ensure that contiguous non-
, ) L " .~ equilibrium trajectories were uncorrelated. The size of the
the simulation cell, the periodic boundary conditions will 9 ]

L . quilibrium cell wad.,= Ly=LZ=(N/p)1/3= 5.0388 and the
evolv_e in time such_that the Iengths of either a_II or some pf‘relonequilibrium cell evolves such that, L,, andL, vary
the simulation cell dimensions will decrease or increase with Y

time. A simple integration of the equations of motion showsWith time according to Eq(14) [6].
: nple nteg . 9 Morriss and Evan§9] demonstrated that for planar shear
that the dimensions of the simulation cell change exponen-

tially simulations, a_substantial improyement in the signal-to-noise
' ratio at long times can be obtained through prudent phase-
_ : space symmetry mappings. This is also true for the case of
Loty =Lo(0)expte s5t), a4 eﬁ)ngatignal rov)\//. If n?izing occurs in the limit ds-«, then
whereL 4(t) is the length of the simulation cell at tintein ~ {B(t)P55(0))~(B(t)){P550)). In general, for a nonequi-
the directions (8=x,Y,2). librium phase variable(B(t))# 0. Morriss and Evan$9]
If the flow is such that the system volume is a constant oshowed that for planar shear flow, if one could generate an
the motion, then the dimensions must change in such a wa§nsemble of initial phases such t&tP,,(I'(0))=0, then

that Tr(Vu)=0. Thus the simulation will last only up to a as & consequence of mixing, the statistical uncertainties at
specific time, at which the length of the cell in the contract-long time that are associated with small nonzero fluctuations

ing dimension reaches its minimum, i.eLs(tya)=2r., aroundP,(0) will be eliminated. In the case of elongational

wherer . is the cutoff radius for the potential interaction. flow, we require XX ;e 55P 55(I'i((0))=0. An appropriate

This maximum time can be shown to be phase-space mapping that can achieve this for our PEF simu-
lations is Fl_)FZl where l_‘l: (Xi i Zi  Pxi 1pyi vai) and

Because elongational flow will involve a change in shape o

g [ 2re Lo=(Yi X ,Zi ,Pyi,Pxi 1 Pzi)- Thus Py, (I'2(0))= Py, (I'1(0))
tmax= €50 IN L.(0))" (19 and P, (I",(0))=P,(I'1(0)). This mapping has the neces-
sary requirements that it preserves the total internal energy of
whereo is the contracting dimension ang,,, is negative.  the equilibrium system at=0, while ensuring at the same

Three kinds of elongational flow are considered in thistime that the new nonequilibrium trajectoryl’{) evolves
paper: planar elongational flolPEP, uniaxial stretching along a distinct path to the original nonequilibrium trajectory
flow (USP), and biaxial stretching flowBSP. PEF occurs (I'1). I, is not a unique mapping scheme and other appro-
when one of the diagonal elements in the strain rate tensor @riate schemes are possible. For USF and BSF two initial
zero and the other two are equal in magnitude and oppositequilibrium phases are insufficient for zeroing the long-time
in sign (stretching and compressindJSF implies that one fluctuations. Now we require an additional phase-space map-
element is positivestretching and the other two are nega- ping I''—I';, where I's=(z,y;,X;,P.i,Pyi . Pxi). Once
tive (compressing and of half the magnitude, while BSF again, this is not a unique mapping.
implies that one element is negativeompressingand the
other two are positivéstretching and of half the magnitude.
These types of flow ensure that the system volume is a con-
stant of the motion. For the geometry used in this work, PEF In Fig. 1 the results of direct and TTCF calculations of the
implies thate,,= — ¢, &yy=¢, ande,,=0; USF implies that ~ diagonal elements of the pressure tensor are displayed for a
Exx=€, £yy=—3¢, and&,,=—3&; and BSF implies that PEF simulation withs,,=—0.5, £,,=0.5, ands,,=0. The
Exx= T &, Eyy= ie, ande,, = 3¢. simulation consists of a total of 202 X 1185 nonequilibrium

The simulation cell consisted &f= 108 atoms that inter- trajectories, each 1100 time steps in duratijartotal of 1.1
act via the Weeks-Chandler-Anders@hiCA) potential[13]  time units per nonequilibrium trajectoryit is clear that for
defined asg(r)=4(r 2—r % +1 for r<2® and ¢(r) this relatively moderate value of applied elongational rate,
=0 for r>2%6 where we define the WCA potential con- the direct results are statistically superior to those of the

IV. RESULTS AND DISCUSSION
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FIG. 1. Direct @) and TTCF calculations of the diagonal ele- F_lG' 2. _Dlrect (&) pressures for thél=864 PEF system. The
ments of the pressure tensor for a PEF simulation with an applie§rain rate is the same as in Fig. 1.
strain rate of,,= —0.5,£,,=0.5, ande,,= 0. Error bars for direct
pressures are smaller than the plotted symbols. All pressures are fhis is particularly clear in thé,, data, where the magni-
reduced units and are dimensionless. tude of the oscillations in the dire&,, are sufficiently large
TTCF method, which is to be expectf. to stand out against the statistical errors in the TTCF results.

A lained | . he diff . TTCF tends to wash out these oscillations and predicts only
s explained in a previous papg8], the differences in  yhe 1ong.time steady-state value of the pressure in any direc-

the various elements of the pressure tensor can be explaingd, This can be particularly useful if one is only interested
in terms of the average spacing between atoms in any pajfj the |ong-time steady-state response of a fluid to an applied
ticular direction. We note tha®,,<P,,<Pyy. Thisisto be  gyqin rate, asindeed is the case in the atomistic simulation of
expecte_d, as the average spacing of atoms in thg ContraCt”%‘i’ongational flow. Of significant interest in such simulations
x direction should be less than the average spacing of atoms the extraction of the elongational viscosity, which is re-
in the stationaryz direction, which in turn should be less |a4e tg the steady-state value of the diagonal elements of the
than the average spacing of atoms in the expangidgec-  ressure tensdi—6]. In such cases, spurious oscillations in
tion. Thus the contribution to the configurational part of they,o pressure actually tend to mask the genuine long-time
pressure tensor will be greatest in the contracting dlreCthfgteady-state value of the viscosity and increase its statistical
and least in the expanding direction, as observed. . uncertainty. The use of TTCF now provides a reliable and
Interestingly, the direct results show significant OSC'"a'powerful means of removing any ambiguity between the

tions in all elements of the pressure tensor, but are greateghngient response of a fluid to an applied field and its true
for the pressure that corresponds to that measured in ﬂ'ﬁeady-state response.

contracting dimensioli.e., P,,). These oscillations are pos- |, Fig. 3 the results of a BSF simulation with,=
sibly a consequence of shock waves or sound waves propa-g 5 ;" -0 25 ands..=0.25 consisting of 183X 1600
s Cyy . ’ 27 . ’

gating through the fluid as a result of the application of aNgwp trajectories, is shown. Once again we notice oscilla-
stepwise dlscoimnuous strain ratetat0. To check this, @ jons in the direct pressures, but none in the TTCF results.
simulation ofN==864 atoms was performed at the same tem-rpq \5jyes ofP,, and P, are identical to within statistical

perature, density, and strain rate. In this case all initial boXyncertainties, which is to be expected, as the fluid expands at
lengths are exactly twice those of the=108 simulations.  eqya] rates in these two dimensions. Similarly, in Fig. 4 the

This allows for a simulation of-2.2 times as longsee Eq.  regyits of a USF simulation consisting of the same number of
(19)]. Dlrept averages of the pressures were tgken over 409ajectories is displayed. In this case,,=0.5, éyy:
NEMD trajectorl_es. As seen in Fig. 2, the o_scnlatlons_ now _ g o5 ande,,= —0.25. We note now that the magnitudes
appear at later times. hfl corresponds to the time at which a ¢ ihe oscillations are almost equal in the expandirgjrec-
peak or trough occurs in =108 system ant, t0 COITe-  isn and the contracting andz directions due primarily to
sponding times in thé\==864 system, one can show from he magnitude of the field in the former being twice as large
Eq. (14) thatt,—t;=A, whereA= —(1/|e s5/)In(3). Thisas-  as that in the latter two. For equal field magnitudes, such as
sumes that waves propagate through both systems at a cdier PEF, oscillations are more pronounced in the contracting
stant velocity. Thus,=1.386+t;. From Figs. 1 and 2 this direction. Clearly the magnitude of these oscillations de-
does indeed appear to be the case. If the system is largeends not just on the magnitude of the field in any particular
enough and the simulation could be run for longer timesdirection, but also on whether the fluid is expanding or con-
presumably these oscillations would damp out at later timedyacting in this direction. However, the TTCF results once
leaving only constant values for the steady-state pressuresagain display no discernible oscillations, making the method
The TTCF results in Fig. 1 demonstrate no measurablédeally suited for studying the long-time steady-state behav-
oscillations in any of the elements of the pressure tensoiior of fluids under a variety of different flow situations.
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FIG. 3. Direct @) and TTCF pressures for a BSF simulation  FIG. 5. Direct ©) and TTCF calculations of the diagonal ele-
with an applied strain rate of,,=—0.5, £,=0.25, ande,, ments of the pressure tensor for a PEF simulation with an applied
=0.25. Error bars for direct pressures are smaller than the plottegtrain rate ofe,,=—0.001,&,,=0.001, ands,,=0. Error bars for
symbols. direct pressuregnot shown are ~5-10 times larger than corre-

sponding TTCF error bars.

Figure 5 shows direct and TTCF pressures for a PEF

simulation with an applied strain rate ef,=—0.001, &y, Finally, it is important to note that all the above results

=0.001, ande,,=0. This simulation consisted of a total of \\are generated by incorporating the phase-space mapping
10x2x 5000 NEMD trajectories, each of 1.1 time units in goheme described in Sec. Iil above. Simulations were also
duration. We note here that the total available simulation,onqcted on systems without the application of phase-space
time for this weak flow is~550 time units. However, be- 40500 and the statistical errors in the TTCF results were
cause of the low value of the elongational strain rate, theen 1o be at least an order of magnitude worse than those
fluid attains a steady state in only a fraction of this total ;- hieved with phase-space mapping. It is thus essential that

availgble time, allowi_ng for a su_bstantiglly shorter run t@me.any TTCF calculations incorporate an appropriate mapping
In this weak flow regime TTCF is manifestly more efficient s.neme to achieve satisfactory numerical efficiency.
than the direct method, with errors in the TTCF calculations

some 5-10 times smaller than corresponding errors in the
direct pressures.
V. CONCLUSION

8.0 L i J TITTITITII] T
TR enti -
r ggg ] It ha_s been demonstrated Fhat the transient-time correlation
750 Gt ] function technique of Morriss and Evaf8-11,7 can be
[ % 1 successfully applied to a simple atomic fluid undergoing
70 [ 2 ] steady elongational flow. The TTCF method demonstrates
Fo o P (D x P_(TICF ] spectacular success at low elongational strain rates, where
b [ s P + P, (TTCF) 1  direct nonequilibrium time-averaged phase variables suffer
®65 ¢ ¢ P, D - P _(TICH 1 from intolerable statistical noise. TTCF is also valid for
i ] higher elongational strain rates, but is seen to be less efficient
6.0 - b than direct averaging. TTCF fails to account for real oscilla-
[ ] tions in the pressure at higher strain rates that are possibly a
55 [ ] consequence of the propagation of shock waves or sound
i 55 OOOO;;;:;Z;;;;;;(XD%%%@ ] waves that result from the response of the fluid to an initial
5o L ‘655@Emg@|§%§¥xlxxj pooTRA A ARRIRER stepwise discontinuous perturbing field. However, despite

this limitation it does, more importantly, correctly predict the
0 0.2 04 06 0.8 1 12 Jong-time steady-state pressures that are required to calculate
tme steady-state elongational viscosities. This filtering property
of the TTCF method is actually highly desirable and ideally
FIG. 4. Direct ) and TTCF pressures for a USF simulation Suited for this purpose. _

with an applied strain rate of,,=0.5, &,y=—0.25, ande,,~ Since TTCF for elongational flow achieves such excellent
—0.25. Error bars for direct pressures are smaller than the plotteguccess for low elongational strain rates, it is hoped that this
symbols. technique can be successfully applied to the NEMD simula-
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tion of more complex molecular fluids. Such fluids requirerates would demonstrate significant non-Newtonian behav-
long simulation times in order to reach a steady state, anabr.

simulations with low applied strain rates may have the desir-

a_ble property that the relaxatlpn tlm'e of' the fluid is 'suff|- ACKNOWLEDGMENTS

ciently smaller than the total simulation time. It remains to

be seen whether such fluids under the influence of these rela- The author wishes to thank Professor Denis Evans and Dr.
tively low, but physically more reasonable, applied strainPeter Daivis for useful discussions related to this work.
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