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Application of transient-time correlation functions to nonequilibrium molecular-dynamics
simulations of elongational flow

B. D. Todd
Cooperative Research Centre for Polymers, CSIRO Division of Molecular Science,

Private Bag 10, Clayton South MDC, Victoria 3169, Australia
~Received 21 May 1997!

The transient-time correlation function~TTCF! technique of Morriss and Evans@Mol. Phys.54, 629~1985!;
Phys. Rev. A35, 792~1987!; Mol. Phys.61, 1151~1987!; Phys. Rev. A38, 4142~1988!; Statistical Mechanics
of Nonequilibrium Liquids~Academic, London, 1990!# is applied to the case of an atomic fluid undergoing
steady isothermal elongational flow. It is found that nonequilibrium molecular-dynamics TTCF calculations of
the diagonal elements of the pressure tensor are extremely efficient for small applied strain rates, where the
signal-to-noise ratio for the equivalent direct time-averaged pressures is far too low. At higher strain rates,
TTCF is seen to faithfully reproduce the long-time steady-state values of the pressures, but is unable to account
for observed transient oscillations. The technique thus provides an unambiguous means of calculating the
long-time steady-state response of a fluid under steady elongational flow and opens the possibility of studying
more complex molecular fluids under relatively weak flow, allowing for greater simulation time compared to
the relaxation time of the fluid.@S1063-651X~97!01312-3#

PACS number~s!: 61.20.Ja, 05.20.2y, 66.20.1d, 83.50.Jf
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I. INTRODUCTION

Nonequilibrium molecular-dynamics~NEMD! simula-
tions of elongational flow have been attempted by only a f
groups over the past decade@1–6#. They are of significant
interest because of the importance that rheological prope
of fluids play in a number of chemical and manufacturi
processes in the oil and polymer industries, for exam
Elongational flow occurs when a fluid is stretched in at le
one direction and compressed in at least another. Howe
the main technical difficulty in these types of simulations
the finite lifetime of a simulation due to the decrease of
least one of the simulation cell dimensions@1–5#. Eventually
the simulation must cease, when the size of the cell in
contraction dimension reaches its minimum extension
twice the range of the interaction potential. The fluid mu
achieve a steady state well before this minimum extensio
reached for a reliable estimate of the steady-state elo
tional viscosity to be made. For a simple atomic fluid, this
not a serious problem, for in general the relaxation time
the fluid is sufficiently smaller than the total simulation tim
However, for complex molecular fluids the relaxation tim
may be significantly larger than the simulation time allo
able, rendering any NEMD simulation of steady-state pr
erties futile.

Recently, Todd and Daivis@6# devised a NEMD method
that applies an oscillating strain rate to the equations of m
tion for a simple atomic fluid. This ensures that the syst
attains a temporally periodic steady state. For a given m
nitude of the strain rate, quantities of interest, such as
diagonal elements of the pressure tensor and hence elo
tional viscosities, are then calculated by extrapolating th
frequency-dependent values down to zero frequency.
main advantage of this technique is that it provides a con
nient and consistent means of extrapolating to the ze
frequency~steady elongation! elongational viscosity, unlike
561063-651X/97/56~6!/6723~6!/$10.00
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the standard method, in which it may be difficult to disti
guish between the transient response and the steady-sta
sponse. It may also be possible to extend this techniqu
the case of molecular fluids and thus extrapolate the ste
state zero-frequency viscoelastic properties of interest.

Another more obvious means of simulating steady el
gational flow of molecular fluids is to apply a low strain ra
to the system. As the maximum simulation time is invers
proportional to the elongational rate«̇ @6#, it is clear that
smaller values of«̇ will lead to longer simulation times. It is
well known that direct NEMD is the most efficient strong
field method of calculating steady-state properties of inter
but is inefficient for small fields@7#. It was partly for this
reason that Morriss and Evans@8–11,7# developed the tech
nique of transient-time correlation functions~TTCFs! as an
efficient method for extracting the transient response o
fluid under the influence of a weak external field. The TTC
technique has been successfully applied to planar s
simulations, with spectacular success. We will now apply
TTCF formalism to the case of steady elongational flow a
will find similar efficiency at low strain rates.

II. THEORY

Using nonlinear isothermal response theory, Morriss a
Evans@8# were able to demonstrate that for a fluid underg
ing planar shear flow, any arbitrary phase variableB(t) can
be expressed in terms of anonequilibriumtransient time cor-
relation function~TTCF!

^B~ t !&5^B~0!&2bFeE
0

t

dŝ B~s!J~0!&, ~1!

whereb51/kT, k is Boltzmann’s constant, andJ(0) is the
dissipative flux att50, which is itself related to the adiabati
time derivative of the internal energy@8,9#. Here T is the
temperature of the system that evolves from an equilibri
6723 © 1997 The American Physical Society
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6724 56B. D. TODD
configuration att50 to some final nonequilibrium state a
time t and the angular brackets denote time averages.
derivation assumes that the applied fieldFe is time indepen-
dent, although recently Petravic and Evans@12# have ex-
tended this formalism to account for explicitly time
dependent fields. It is important to recognize that Eq.~1!
represents the correlation of a nonequilibrium phase varia
B(t) at some timet, with an equilibrium (t50) value of the
dissipative flux. It represents the natural nonlinear gener
zation of the equilibrium Green-Kubo formulas. AsB(t) rep-
resents a general arbitrary phase variable, the task at
involves identifying the appropriate values of the dissipat
flux and external field for elongational flow.

For an atomic fluid undergoing planar shear flow, t
adiabatic derivative of the internal energyH0 is usually writ-
ten asḢ052JFe , whereJ andFe are as previously defined
For more complex flows, one can generalize this toḢ05
2J:Fe , where now bothJ and Fe are tensorial quantities
For planar shear~or planar Couette! flow, it is easily seen
that Ḣ052ġPxyV @9#, whereġ is the strain rate,Pxy is the
xy element of the pressure tensor~negative of the shear
stress!, andV is the system volume.

For steady elongational flow without shear, we can wr
the applied strain rate tensor as

“u[Fe5S «̇xx

0
0

0
«̇yy

0

0
0

«̇zz

D , ~2!

where u is the streaming velocity of the fluid. Assumin
pairwise additive potential interactions between atoms,
can write the total internal energy of a particle as

Hi5
pi

2

2mi
1

1

2 (
j

f i j , ~3!

where we note that the momentapi are peculiar with respec
to u. The total internal energy is thusH05( iHi . Assuming
unthermostated SLLOD equations of motion for the parti
dynamics@7#,

ṙ i5
pi

mi
1r i•“u,

ṗi5Fi2pi•“u, ~4!

it is straightforward to show that the adiabatic time deriv
tive of the total internal energy is given by

Ḣ052 «̇xx(
i

Fpxi
2

mi
1Fxixi G2 «̇yy(

i
Fpyi

2

mi
1Fyiyi G

2 «̇zz(
i

Fpzi
2

mi
1Fzizi G

52@ «̇xxPxx1 «̇yyPyy1 «̇zzPzz#V52@VP:“u#[2J:Fe .

~5!

Following the procedure of Morriss and Evans@8#, one
can show that the time-dependent Gaussian isokinetic di
bution function takes on the general form
is

le

li-
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e

e

e
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f ~G,t !5expH 2bE
0

t

ds@J~G,2s!:Fe#J f ~G,0!

5expH 2b(
d,s

FedsF E0

t

ds Jsd~G,2s!G J
3 f ~G,0!, ~6!

where f (G,0) is the time-independent equilibrium isokinet
distribution function, given as@7#

f ~G,0!5
exp@2bf~G!#d„K~G!2K0…

*dG exp@2bf~G!#d„K~G!2K0…

. ~7!

Here f is the total potential energy of the system,K is the
total kinetic energy, andK0 is the kinetic energy at which the
system is constrained. One can now calculate the ensem
average of the time evolution of any phase variable in
usual manner,

^B~ t !&5E dG B~G! f ~G,t !

5E dG B~G!expH 2b(
d,s

FedsF E0

t

ds Jsd~G,2s!G J
3 f ~G,0!. ~8!

Taking the time derivative of Eq.~8! and making use of the
identity ^X(t)Y&5^XY(2t)&, we find

]

]t
^B~ t !&5E dG B~G!S 2b(

d,s
Feds

Jsd~G,2t ! D f ~G,t !

52b(
d,s

Feds
^B~ t !Jsd~0!&. ~9!

Note here thatJsd(0) refers to equilibrium values ofJsd at
t50. Finally, integrating Eq.~9! with respect to time gener
ates the general relation for the time evolution ofB,

^B~ t !&5^B~0!&2b(
d,s

Feds
E

0

t

dŝ B~s!Jsd~0!&. ~10!

For the specific case of steady elongational flow with
shear, we substitute the values ofFeds

andJsd(0), derived
in Eq. ~5!, into Eq. ~10! and get

^B~ t !&5^B~0!&2bVF «̇xxE
0

t

dŝ B~s!Pxx~0!&

1 «̇yyE
0

t

dŝ B~s!Pyy~0!&

1 «̇zzE
0

t

dŝ B~s!Pzz~0!&G . ~11!

For the purposes of this paper we are primarily concer
with calculating the diagonal elements of the pressure ten
Pdd , so we simply replaceB with Pdd . We further note that
Eq. ~11! is valid for an isothermal system that evolves und
the application of a Gaussian thermostat to the equation
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56 6725APPLICATION OF TRANSIENT-TIME CORRELATION . . .
motion. This assumption is implicit in the derivation of th
Gaussian isokinetic distribution function~6!.

III. SIMULATIONS

The thermostated SLLOD equations of motion@7# that are
used in this work are

ṙ i5
pi

mi
1r i•“u,

~12!

ṗi5Fi2pi•“u2api ,

wherea is a Gaussian thermostat multiplier used to constr
the system to constant temperature, given as

a5
( ipi•@Fi2~pi•“u!#

( ipi
2 . ~13!

Because elongational flow will involve a change in shape
the simulation cell, the periodic boundary conditions w
evolve in time such that the lengths of either all or some
the simulation cell dimensions will decrease or increase w
time. A simple integration of the equations of motion sho
that the dimensions of the simulation cell change expon
tially,

Ld~ t !5Ld~0!exp~ «̇ddt !, ~14!

whereLd(t) is the length of the simulation cell at timet in
the directiond (d5x,y,z).

If the flow is such that the system volume is a constan
the motion, then the dimensions must change in such a
that Tr(“u)50. Thus the simulation will last only up to
specific time, at which the length of the cell in the contra
ing dimension reaches its minimum, i.e.,Ld(tmax)52rc ,
where r c is the cutoff radius for the potential interactio
This maximum time can be shown to be

tmax5 «̇ss
21 lnS 2r c

Ls~0! D , ~15!

wheres is the contracting dimension and«̇ss is negative.
Three kinds of elongational flow are considered in t

paper: planar elongational flow~PEF!, uniaxial stretching
flow ~USF!, and biaxial stretching flow~BSF!. PEF occurs
when one of the diagonal elements in the strain rate tens
zero and the other two are equal in magnitude and oppo
in sign ~stretching and compressing!. USF implies that one
element is positive~stretching! and the other two are nega
tive ~compressing! and of half the magnitude, while BS
implies that one element is negative~compressing! and the
other two are positive~stretching! and of half the magnitude
These types of flow ensure that the system volume is a c
stant of the motion. For the geometry used in this work, P
implies that«̇xx52 «̇, «̇yy5 «̇, and«̇zz50; USF implies that
«̇xx5 «̇, «̇yy52 1

2 «̇, and «̇zz52 1
2 «̇; and BSF implies that

«̇xx52 «̇, «̇yy5
1
2 «̇, and «̇zz5

1
2 «̇.

The simulation cell consisted ofN5108 atoms that inter-
act via the Weeks-Chandler-Andersen~WCA! potential@13#
defined asf(r )54(r 2122r 26)11 for r ,21/6 and f(r )
50 for r .21/6, where we define the WCA potential con
n
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stantss and«, as well as the mass of the atoms and Bol
mann’s constant, to be unity for simplicity. Thus all me
sured properties are in dimensionless reduced units.
system is three dimensional and is periodic in all dimensio
All simulations are performed at the Lennard-Jones tri
point r50.8442 andT50.722. The equations of motio
were integrated using a fourth-order Runge-Kutta sche
and the integration time step was 0.001 in reduced units
all simulations. It is essential to use a self-starting integra
such as the Runge-Kutta scheme, for TTCF calculati
rather than Gear predictor-corrector or leapfrog integrato
The latter are accurate only after an initial startup period a
are therefore unsuitable for the calculation of transient
sponses@9,11#.

In all simulations, an equilibrium trajectory was main
tained at a constant state point of (r,T)5(0.8442, 0.722),
while at equal intervals of 5000 time steps, two or thr
nonequilibrium trajectories were initiated~see below!. This
time separation was chosen to ensure that contiguous
equilibrium trajectories were uncorrelated. The size of
equilibrium cell wasLx5Ly5Lz5(N/r)1/355.0388 and the
nonequilibrium cell evolves such thatLx, Ly, and Lz vary
with time according to Eq.~14! @6#.

Morriss and Evans@9# demonstrated that for planar she
simulations, a substantial improvement in the signal-to-no
ratio at long times can be obtained through prudent pha
space symmetry mappings. This is also true for the cas
elongational flow. If mixing occurs in the limit ast→`, then
^B(t)Pdd(0)&;^B(t)&^Pdd(0)&. In general, for a nonequi
librium phase variable,̂ B(t)&Þ0. Morriss and Evans@9#
showed that for planar shear flow, if one could generate
ensemble of initial phases such that( i Pxy„Gi(0)…50, then
as a consequence of mixing, the statistical uncertaintie
long time that are associated with small nonzero fluctuati
aroundPxy(0) will be eliminated. In the case of elongation
flow, we require ( i(d«̇ddPdd„Gi(0)…50. An appropriate
phase-space mapping that can achieve this for our PEF s
lations is G1→G2 , where G15(xi ,yi ,zi ,pxi ,pyi ,pzi) and
G25(yi ,xi ,zi ,pyi ,pxi ,pzi). Thus Pxx„G2(0)…5Pyy„G1(0)…
and Pyy„G2(0)…5Pxx„G1(0)…. This mapping has the neces
sary requirements that it preserves the total internal energ
the equilibrium system att50, while ensuring at the sam
time that the new nonequilibrium trajectory (G2) evolves
along a distinct path to the original nonequilibrium trajecto
(G1). G2 is not a unique mapping scheme and other app
priate schemes are possible. For USF and BSF two in
equilibrium phases are insufficient for zeroing the long-tim
fluctuations. Now we require an additional phase-space m
ping G1→G3, where G35(zi ,yi ,xi ,pzi ,pyi ,pxi). Once
again, this is not a unique mapping.

IV. RESULTS AND DISCUSSION

In Fig. 1 the results of direct and TTCF calculations of t
diagonal elements of the pressure tensor are displayed
PEF simulation with«̇xx520.5, «̇yy50.5, and«̇zz50. The
simulation consists of a total of 203231185 nonequilibrium
trajectories, each 1100 time steps in duration~a total of 1.1
time units per nonequilibrium trajectory!. It is clear that for
this relatively moderate value of applied elongational ra
the direct results are statistically superior to those of
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6726 56B. D. TODD
TTCF method, which is to be expected@7#.
As explained in a previous paper@6#, the differences in

the various elements of the pressure tensor can be expla
in terms of the average spacing between atoms in any
ticular direction. We note thatPyy,Pzz,Pxx . This is to be
expected, as the average spacing of atoms in the contra
x direction should be less than the average spacing of at
in the stationaryz direction, which in turn should be les
than the average spacing of atoms in the expandingy direc-
tion. Thus the contribution to the configurational part of t
pressure tensor will be greatest in the contracting direc
and least in the expanding direction, as observed.

Interestingly, the direct results show significant oscil
tions in all elements of the pressure tensor, but are grea
for the pressure that corresponds to that measured in
contracting dimension~i.e., Pxx!. These oscillations are pos
sibly a consequence of shock waves or sound waves pr
gating through the fluid as a result of the application o
stepwise discontinuous strain rate att50. To check this, a
simulation ofN5864 atoms was performed at the same te
perature, density, and strain rate. In this case all initial b
lengths are exactly twice those of theN5108 simulations.
This allows for a simulation of;2.2 times as long@see Eq.
~15!#. Direct averages of the pressures were taken over
NEMD trajectories. As seen in Fig. 2, the oscillations no
appear at later times. Ift1 corresponds to the time at which
peak or trough occurs in theN5108 system andt2 to corre-
sponding times in theN5864 system, one can show from

Eq. ~14! that t22t15D, whereD52(1/u«̇ddu)ln(1
2). This as-

sumes that waves propagate through both systems at a
stant velocity. Thust251.3861t1 . From Figs. 1 and 2 this
does indeed appear to be the case. If the system is l
enough and the simulation could be run for longer tim
presumably these oscillations would damp out at later tim
leaving only constant values for the steady-state pressur

The TTCF results in Fig. 1 demonstrate no measura
oscillations in any of the elements of the pressure ten

FIG. 1. Direct (D) and TTCF calculations of the diagonal el
ments of the pressure tensor for a PEF simulation with an app
strain rate of«̇xx520.5, «̇yy50.5, and«̇zz50. Error bars for direct
pressures are smaller than the plotted symbols. All pressures a
reduced units and are dimensionless.
ed
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This is particularly clear in thePxx data, where the magni-
tude of the oscillations in the directPxx are sufficiently large
to stand out against the statistical errors in the TTCF resu
TTCF tends to wash out these oscillations and predicts o
the long-time steady-state value of the pressure in any di
tion. This can be particularly useful if one is only intereste
in the long-time steady-state response of a fluid to an app
strain rate, as indeed is the case in the atomistic simulatio
elongational flow. Of significant interest in such simulatio
is the extraction of the elongational viscosity, which is r
lated to the steady-state value of the diagonal elements of
pressure tensor@1–6#. In such cases, spurious oscillations
the pressure actually tend to mask the genuine long-t
steady-state value of the viscosity and increase its statis
uncertainty. The use of TTCF now provides a reliable a
powerful means of removing any ambiguity between t
transient response of a fluid to an applied field and its t
steady-state response.

In Fig. 3 the results of a BSF simulation with«̇xx5
20.5, «̇yy50.25, and«̇zz50.25, consisting of 103331000
NEMD trajectories, is shown. Once again we notice oscil
tions in the direct pressures, but none in the TTCF resu
The values ofPyy and Pzz are identical to within statistical
uncertainties, which is to be expected, as the fluid expand
equal rates in these two dimensions. Similarly, in Fig. 4 t
results of a USF simulation consisting of the same numbe
trajectories is displayed. In this case,«̇xx50.5, «̇yy5
20.25, and«̇zz520.25. We note now that the magnitude
of the oscillations are almost equal in the expandingx direc-
tion and the contractingy andz directions due primarily to
the magnitude of the field in the former being twice as lar
as that in the latter two. For equal field magnitudes, such
for PEF, oscillations are more pronounced in the contract
direction. Clearly the magnitude of these oscillations d
pends not just on the magnitude of the field in any particu
direction, but also on whether the fluid is expanding or co
tracting in this direction. However, the TTCF results on
again display no discernible oscillations, making the meth
ideally suited for studying the long-time steady-state beh
ior of fluids under a variety of different flow situations.

d

in

FIG. 2. Direct (D) pressures for theN5864 PEF system. The
strain rate is the same as in Fig. 1.
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56 6727APPLICATION OF TRANSIENT-TIME CORRELATION . . .
Figure 5 shows direct and TTCF pressures for a PE
simulation with an applied strain rate of«̇xx520.001, «̇yy
50.001, and«̇zz50. This simulation consisted of a total of
103235000 NEMD trajectories, each of 1.1 time units in
duration. We note here that the total available simulatio
time for this weak flow is;550 time units. However, be-
cause of the low value of the elongational strain rate, th
fluid attains a steady state in only a fraction of this tota
available time, allowing for a substantially shorter run time
In this weak flow regime TTCF is manifestly more efficient
than the direct method, with errors in the TTCF calculation
some 5–10 times smaller than corresponding errors in t
direct pressures.

FIG. 3. Direct (D) and TTCF pressures for a BSF simulation
with an applied strain rate of«̇xx520.5, «̇yy50.25, and «̇zz

50.25. Error bars for direct pressures are smaller than the plott
symbols.

FIG. 4. Direct (D) and TTCF pressures for a USF simulation
with an applied strain rate of«̇xx50.5, «̇yy520.25, and«̇zz5
20.25. Error bars for direct pressures are smaller than the plott
symbols.
F

n

e
l
.

s
e

Finally, it is important to note that all the above results
were generated by incorporating the phase-space mappin
scheme described in Sec. III above. Simulations were als
conducted on systems without the application of phase-spac
mapping and the statistical errors in the TTCF results were
seen to be at least an order of magnitude worse than thos
achieved with phase-space mapping. It is thus essential th
any TTCF calculations incorporate an appropriate mapping
scheme to achieve satisfactory numerical efficiency.

V. CONCLUSION

It has been demonstrated that the transient-time correlatio
function technique of Morriss and Evans@8–11,7# can be
successfully applied to a simple atomic fluid undergoing
steady elongational flow. The TTCF method demonstrate
spectacular success at low elongational strain rates, whe
direct nonequilibrium time-averaged phase variables suffe
from intolerable statistical noise. TTCF is also valid for
higher elongational strain rates, but is seen to be less efficien
than direct averaging. TTCF fails to account for real oscilla-
tions in the pressure at higher strain rates that are possibly
consequence of the propagation of shock waves or soun
waves that result from the response of the fluid to an initia
stepwise discontinuous perturbing field. However, despite
this limitation it does, more importantly, correctly predict the
long-time steady-state pressures that are required to calcula
steady-state elongational viscosities. This filtering property
of the TTCF method is actually highly desirable and ideally
suited for this purpose.

Since TTCF for elongational flow achieves such excellen
success for low elongational strain rates, it is hoped that thi
technique can be successfully applied to the NEMD simula

ed

ed

FIG. 5. Direct (D) and TTCF calculations of the diagonal ele-
ments of the pressure tensor for a PEF simulation with an applie
strain rate of«̇xx520.001,«̇yy50.001, and«̇zz50. Error bars for
direct pressures~not shown! are ;5 – 10 times larger than corre-
sponding TTCF error bars.
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tion of more complex molecular fluids. Such fluids requ
long simulation times in order to reach a steady state,
simulations with low applied strain rates may have the de
able property that the relaxation time of the fluid is suf
ciently smaller than the total simulation time. It remains
be seen whether such fluids under the influence of these
tively low, but physically more reasonable, applied stra
m

-

d
r-

la-

rates would demonstrate significant non-Newtonian beh
ior.
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